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We examine the theoretical line spectra from hydrogenlike argon in the electron-number-density
range of 10**~10* cm ™ and at a temperature corresponding to kT =800 eV. At these high densities it
is important to address the relevance of higher-order plasma-ion microfield effects on the spectral line
shape. We begin by calculating spectral line shapes using electric-field-dependent matrix elements that
are constructed from wave functions which are solutions of Schrddinger’s equation for hydrogenic ions
in a uniform field. This provides a suitable basis for including microfield spatial nonuniformities by con-
sidering the quadrupole term in the radiator-perturbing ion interaction. Field gradients are calculated in
an approximation that takes ion-ion correlations into account. We examine the consequences of these
effects as well as of mixing between the adjacent Stark manifold on the Lyman-a and Lyman-8 lines of

hydrogenlike argon.

PACS number(s): 52.25.Nr, 32.70.Jz, 32.30.Rj

I. INTRODUCTION

For a number of years, x-ray line spectroscopy has
been used as a noninvasive diagnostic of hot dense plas-
mas [1,2]. At the present time this diagnostic technique
finds application in the diagnosis of temperature and den-
sity in dense plasmas created by inertial confinement and
other means. In particular, Stark broadening has been
used to infer electron number densities up to (2—-8)X 10%*
cm ™3 [3]. Since the trend in these experiments is for even
higher densities, it is important to examine further the
consequences of the concomitant high-strength plasma
electric microfields generated in such plasmas. At lower
densities, the assumption of a uniform microfield at the
radiator is usually made. As the density increases and
the interion distances decrease, this assumption becomes
questionable due to the existence of significant microfield
gradients [4-9]. These field nonuniformities were first
treated in detail by the inclusion of the ion quadrupole
effect by Demura and Sholin [4]. Also, adjacent Stark
manifolds will begin to mix [10,11] and the resonance na-
ture of the atomic states becomes more apparent. For
weak fields these resonances are very similar in character
to the unperturbed bound states and can be treated by
perturbation theory. However, as the plasma field
strength becomes comparable to the field produced by the
nucleus of the radiating atom or ion, a nonperturbative
treatment is needed.

In this paper we will examine some of the conse-
quences of these high-density effects on the Lyman-a and
Lyman-f lines of hydrogenic argon. We will focus on the
electron-number density range of 10*-10%° cm™3 at a
temperature corresponding to 800 eV. The onset of
significant electron degeneracy (not included in our for-
mulation) imposes the upper limit on the density exam-
ined in this paper. We choose as the atomic basis set for
this problem the set of wave functions that are solutions
to Schrodinger’s equation corresponding to a hydrogenic
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ion in a uniform electric field. This exact treatment of
the uniform field avoids the usual perturbation theory ap-
proach typically used for weaker fields. Using this field-
dependent basis we will treat, perturbatively, field nonun-
iformities by the inclusion of the ion quadrupole term
from the multipole expansion of the radiator-perturbing
ion interaction.

Our theoretical development follows standard methods
which impose the quasistatic ion approximation. Since
we examine the spectra of ions in a pure argon plasma,
ion dynamics effects will not be significant [12]. The
effect of the dynamic perturbing electrons is treated by
the Smith-Hooper relaxation theory to second order in
the electron-radiator interaction [13,14]. The evaluation
of the ion quadrupole term is carried out using a field
constrained average employing the adjustable parameter
exponential approximation (APEX) model of the
plasma-ion microfield [15,16] thus also incorporating
correlations among perturbing ions. This represents an
improvement with respect to a previous treatment that
only included correlations between the radiator and per-
turbing ions [6].

The power emitted by dipole radiation from an emitter
immersed in a plasma, as a function of the frequency, is
given by [1,17]

40t
P(CD)ZEC—:;I(CO) , (1)

where I (), the line-shape function, is defined by

Ho)=T 8(o—wy)|(bldla)|%, . )
a,b

Here a and b refer to the initial and final states of the to-
tal radiator-plasma system, respectively. The energy
difference between these initial and final states is
., =(E,—E,)/#. The dipole moment of the radiator is
given by d and the population of the initial states is given
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by p,, which is an eigenvalue of the density matrix p,
where p=3,p;|i ){i|. The eigenvectors |i) are eigen-
functions of the system Hamiltonian.

Our system will consist of plasma electrons, ions, and
the radiator which will always be referred to by the sub-
scripts e, i, and r, respectively. It is convenient to
represent the line-shape function as the transform of a
dipole-dipole autocorrelation function ¢(z),

zi *® it
Iw)=—Re [ “dre'”¢(1) , (3)

where ¢(t) is given by [1]
#(t)=Tr,, ;[d(0)-d(2)p] . (4)

Here the subscripts refer to the trace over electron, radia-
tor, and ion coordinates and d(¢) is the radiator dipole
operator in the Heisenberg representation.

The multipole expansion [18] of the radiator-
perturbing ion interaction is given by

3E;(0)
+

V,i=x9(0)—d-E(0)—£3 Q; ; (5)
ij

The electric fields and potentials refer to those produced
by the plasma ions at the radiator which we take to be lo-
cated at the origin. The first three terms are the mono-
pole, the ion dipole, and the ion quadrupole, respectively.
The effective charge of the radiator is given by y=Z —a,
where Z is the radiator charge and a is the number of
bound radiator electrons. The components of the radia-
tor quadrupole moment tensor are given by Q; ;. The oc-
tupole term is fourth order in the expansion parameter &
compared to the third-order quadrupole term (8=r, /7, ;,
where r, is the electron Bohr orbital radius for a radiator
of principal quantum number » and 7, ; is the ion sphere
radius). For the special case of hydrogenlike ions, it has
been shown [19] that the octupole term, to first order in
perturbation theory, produces symmetric shifts of the hy-
drogenic energy levels and thus will not contribute
significantly to the asymmetry of the line. The quadru-
pole term, however, typically induces an asymmetry in
the spectral line shape. Since we are using a basis set for
this calculation that is made up of eigenfunctions of the
radiator Hamiltonian that includes the field-dependent
dipole term, we take the quadrupole term as the first-
order correction to this Hamiltonian and neglect all
higher-order terms.

We symbolically represent all field-gradient terms
0E;(0)/9x; or 3;E; by the generic term E,,=93,E,. By
using the standard technique of introducing a delta func-
tion and factoring the density matrix [20], we can express

¢(1) as
¢()= [ de [ de,,Tr, . i[p;8(e—E)8(€,,~ E,,)
Xd(0)-d(t)p,,] . 6)

Here the integration variable €,, is used in the same way
as E,,, above to represent all relevant partial derivatives.
The system ion coordinates have now been separated
from the radiator and perturbing electron subsystems.
This is expressed by the use of Eq. (6) in Eq. (3) to give
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)= [de [de, W(ee, ) 0,66, , (7)

where W(e,€,,) is the ion joint probability function and
J(w,€, Euv) is the line-shape function for a radiator in the
presence of a uniform field € and a field gradient
represented by €,,,. W (e, €,,) is given by

W (e,e,,)=Tr;[p;6(e—E)d(e,,—E,,)] (8)

and is discussed further in Sec. II. The line-shape func-
tion is given by

J(w,e,ew)";—:T—ReTr,,e[d(O)-d(t)p,,e] . )

The theoretical development of this expression proceeds
in the standard way [13,21] with the exception that the
zero-order radiator Hamiltonian H,(€) contains the di-
pole part of the radiator-ion multipole expansion. The
ion quadrupole term that describes the field gradient is
treated as the lowest-order correction.

We will consider the first two hydrogenic ion reso-
nance lines: the L, and Lg. For hydrogenic ions at the
density and temperature we will be considering, the
ground state is only very weakly affected by the plasma.
Therefore we will ignore any lower state broadening and
interference effects, and the resulting line-shape function
will be given by

J(0,6€,,)= —ilm S podys-d{o—[H,(€€,,)—0;]

—M(w)}g, (10)

where o/ is the lower state energy of the radiator; a and
a' denote upper states. For simplicity we have set i=1.
The Hamiltonian H, (€,€,,) is given by

H,(G,E”V):Hr(é‘)—%zQi,jaifj » (11
ij

where H,(€) is the field-dependent Hamiltonian
H,(e)=H"’—d-e, (12)

and H? is the field-free Hamiltonian. The electron
broadening operator matraix elements are given approxi-
mately by [14]

M(w)y, = —é 3 dyrdyngG(Aag ) (13)

”

a

where the subscript f refers to the single lower radiator
state. Here G (Aw) is the electron many-body function
[14,22]. Note that the electron broadening matrix ele-
ments M(w),, are field dependent due to the field depen-
dence of the dipole matrix elements d, ,- as well as the
field dependence of Aw, s.

II. THE ION-QUADRUPOLE EFFECT

The ion coordinate joint probability function W(e,e,,)
[Eq. (8)] has been introduced to describe the joint proba-
bility distribution for the microfield € and the field gra-
dients €,,,. Writing out this probability function explicit-
ly gives
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3
W(e,ew)=<5(e—1~:) I a(e,.j—E,.j)>
ij=1 i

P>

3
= [e7®8(e—E) IT 8(e;—E;)d"r
c ij=1
7>

(14)

where subscripts 1, 2, and 3 represent the spatial indices
x, y, and z. Here { ); is the ensemble average over ion
coordinates, Z, is the configurational partition function
for the ion subsystem, N is the number of ions, and V is
the potential energy of the ion subsystem in the presence
of the charged radiator. The quantities E and E;; are the
many-particle electric field and field gradients at the radi-
ator and are functions of the perturbing ion coordinates.
Use of integral representations for the field-gradient delta
functions gives

W(e,ew)=ﬁg(e)fd6a exp [—iZ 0i€; ](eie>€
ij

=Q(e)P(em,|e) , (15)
where
iLj
and
1 _
Q(6)=—Zc—fd3Nre PV8(e—E) . (17

Here Q(€) should not be confused with the components
of the quadrupole tensor Q, ;. We have defined the condi-
tional averaged quantity

fdsNr e P’8(e—E)e'®
Jd*Nre=F"8(e—E)

(e®) = (18)

This is the ensemble average of e’® where all included ion
configurations are constrained to give the microfield
value €. By defining the average in this way we have re-
tained the benefits of using the ordinary plasma
microfield function Q(e€) to describe the probability of
the uniform field at the radiator and we are now free to
approximate the higher-order field gradients as necessary.
The function P(€,,|€) is the conditional probability for
the field derivatives €,, given €. For simplicity we take
the field to be in the z direction.

Direct evaluation of this constrained average is difficult
if we wish to retain the full influence of the field gradient.
Consequently, we make a simple approximation to this
function. We expand the exponential in a cumulant ex-
pansion [23] by taking

s 4 c,,] : (19)

(e’®) =exp
n=1

where the first two coefficients are given by C,=(0),
and C,=(©6?),—(0)2. If we retain only the C, term as
an approximation, this gives

(€9) me" Ve, 0)
which is equivalent to replacing the field gradient by its
average value. Retention of the C, term in the expansion
in Eq. (19) leads to corrections to the Hamiltonian that
are centered about the average (E; ). but are governed
by a bivariate normal distribution in the E,, and the E,,
terms (the E,, terms can be eliminated). Contributions
from the cross terms E;; for i #j are governed by normal
distributions that are distributed about (E,-j >.=0. The
variances of these distributions are of third order in the
expansion parameter 8. The distribution P(elwle) can, in
principle, be evaluated explicitly including the C, and C,
terms; here we will explore the effect of including only
C,. The results of including C, will be presented in a
separate paper.

Substitution of Eq. (20) into Eq. (15) gives

P(e,,l€)=8(e,,—(E,,),) . 1)

This results in a calculationally simple and useful approx-
imation. Returning to the expression for the spectral line
intensity, Eq. (7) with the use of Eq. (15) now gives

Iw)= [de[de, Q)P (e, ) (w,66,,) . (22)

Since the microfield function Q (€) depends only on the
magnitude of €, we can write

P(e)=4me*Q(e) . (23)

Using Eq. (21) for P(ew|e) we can carry out the €, in-
tegrations to obtain

IHo)= [deP(e)(w,6,(E,,),) . (24)

The field-gradient terms in J(w, €,€,,) have now been re-
placed with their constrained averages whose only field
dependence is €. To evaluate the ion quadrupole term
note that the perturbed radiator Hamiltonian [Eq. (11)] is
now

H,(6,E,,))=H/(e)—+3 Q,;{E;).. (25)
i
(E;; ) may be evaluated by making use of the traceless-
ness of the quadrupole tensor [18], the property
9;E;=9,E;, the fact that (E;) =0 for i#j, and the
equivalence { E,, ) .= (Eyy ) to give the expression

2Qi,j<Eij)e=’%sz(<Ezz>e_%<V'E>e) . (26)
i’j

If the ion interaction potentials are screened we have
V-E+0 due to the continuous charge distribution. How-
ever, the form of the multipole expansion we have em-
ployed assumes V-E=O0 at the radiator, which is not
strictly true for the screened ion potentials used in plas-
ma microfield models. We reconcile these two facts by
noting that if we restrict the screening charge density of
the perturbing ions to lie outside the Bohr orbit of the
radiator’s bound electron, we will have V-E=0 at the ra-
diator. This gives

H,(6,{E,,))=H,(€)—10Q,(E,).. 27
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In the Appendix it is shown that { E,, ), can be related to
a functional derivative of the plasma microfield generat-
ing functional.

In this work we choose the APEX approximation
[15,24-26] for this microfield generating functional. It
has the advantage of incorporating correlations between
the perturbing ions while retaining the functional simpli-
city of the independent-perturber (IP) model of the
microfield. We will also use an IP model to evaluate the
ion quadrupole effect which will lead to an underestimate
of its magnitude due to the neglect of the correlations
among perturbing ions. We will compare these two mod-
els along with a nearest-neighbor (NN) approximation for
the field gradient.

The APEX model for the microfield is based on the in-
dependent perturber model but with an effective inverse
screening length a. The field is effectively renormalized
in this way by requiring that two conditions [15] on Q (€)
be met: the so-called second moment condition and the
local field condition. The transformed conditional distri-
bution function g(r;A) for the APEX microfield distribu-
tion is given by [16]

g(r;k)=8(?—‘$é(—]r—)—)—=nig(r)eil~li*(r) , (28)

where g (r) is the equilibrium radial distribution function
and E*(r) is the APEX renormalized field. This field is
given by

E*(r)=Z;e=(1+ar)e ™, (29)
r

where the parameter a is determined by the above two
conditions and Z; is the perturbing ion charge. The re-
quired radial distribution function g(7) is calculated by
integral equation methods due to Rogers [27]. Lado and
Dufty [16] have shown that this method for evaluating
Eq. (28) by using the APEX microfield tends to underesti-
mate the interion correlations. We retain the APEX
model, however, because of its simplicity and significant
improvement over the IP model of Joyce [6,19]. The
evaluation of ( E,, ) is carried out in the Appendix.

We examine the behavior of the field gradient term
(E, ). in the limit of large and small values of €. For
€—0 it is easy to show that the field dependence follows
the limit of the spherical Bessel function of the first kind
Ja(ke) to lowest order in €. This will give

lim (E, ).=—Cée*, (30)
€e—0

where C is a constant that depends on n,, T, and Z,.
Thus the zero-field limit is zero as is expected from sym-
metry considerations. The large-field behavior of the
microfield at a charged radiator is governed by a single
nearest-neighbor ion [28]. For the strongest fields, the
nearest neighbor will be inside the screening length Ap,
so screening will be negligible. To approximate (E,, ).
let the field gradient at the radiator be that produced by a
single ion located at the distance from the radiator
sufficient to give a field value at the radiator of €. This
gives the nearest-neighbor approximation
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_€
3

¥oe

<Ezz)e,NN:_ ?3/2 (31)

2
V'Z,
for large €. Here €=¢/€, with e,,=e/r,,2,e, where 7, , is
the electron sphere radius.

In Fig. 1 we show the behavior of the APEX model for
the field gradient at several values of the electron-number
density. For the largest density we see that the magni-
tude of the field-gradient term begins to approach the
nearest-neighbor limiting value as the field increases. The
difference between these two models can be attributed to
many-body effects. These effects will play a decreasing
role for the larger field cases because more than one per-
turbing ion in close proximity to the radiator is required
for many-body effects to be important. The probability of
having two perturbing ions located close to the radiator,
however, is small [28] because of mutual repulsion lead-
ing to the dominance of the nearest-neighbor contribu-
tion to the field gradient at large field values. For com-
parison with the APEX model for the field gradient we
introduce an IP model that neglects correlations among
perturbing ions but retains the correlations between per-
turbing ion and the central charged radiator. To accom-
plish this we use the simple Debye-Hliickel approximation
to the radial distribution function g(r) [29] with screen-
ing provided by electrons only. For a given density the
results of the IP model for the magnitude of the field gra-
dient falls below that of the APEX model. This is also il-
lustrated in Fig. 1 for a single density. The net effect of
introducing ion-ion correlations into our model is to in-
crease the magnitude of the constrained average field gra-
dient as compared to that calculated from the IP model.

2z
I

FIG. 1. Comparison of the magnitude of the constrained
average field-gradient term ( E,, ) to the nearest-neighbor limit-
ing case for varying density. —-—- refers to n,=1X10%*
cm™3, —-—-—-— refers to n,=5X10** cm™3, - refers to
n,=1X10* cm™3, and refers to the nearest-neighbor
model discussed in the text. For comparison the IP (no ion-ion
correlations) approximation is given by ————— for
n,=1X10** cm™3. All temperatures are kT =800 eV and the
field gradient is in units of e /72 .
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This will result in a corresponding increase in the magni-
tude of the ion quadrupole effect on the spectral line
shape.

III. ATOMIC DATA
FOR THE EVALUATION OF MATRIX ELEMENTS

To evaluate the necessary matrix elements for the radi-
ator subsystem for the calculation of the spectral line
shape I (w), we are free to use any complete set of basis
states that spans the Hilbert space of the system. The
usual basis set consists of the eigenvectors of the field-free
radiator Hamiltonian. We will employ an alternative
basis set that consists of the eigenvectors of a radiator
Hamiltonian [Eq. (12)] that includes the ion dipole term
from the perturbing-ion multipole expansion. This Ham-
iltonian is diagonal in the field-dependent basis set, and
by its use we automatically incorporate the major effects
of the perturbing plasma electric microfield into the prob-
lem. Specifically, we will use H,(€) as our zero-order ra-
diator Hamiltonian. The first-order correction to this
will be the next term in the perturbing-ion multipole ex-
pansion, the ion quadrupole term. Throughout this pa-
per we use the term “field-dependent atomic physics” to
refer to energy values and wave functions (and resulting
matrix elements) obtained from the Hamiltonian H,(€).

To calculate our field-dependent basis we solve
Schrodinger’s equation in the position representation
with the Hamiltonian H,(€),

H, (e)yY(r)=Ey(r) . (32)

The natural coordinates to use for this Hamiltonian are
parabolic coordinates [30,31] since the wave equation is
then separable and solutions can be sought of the form

e:tim¢:

Y(r)=f(£)g(n) Vo (33)

The principal quantum number is given in terms of the
parabolic quantum numbers such that »n=n,;+n,
+m +1 and is subject to the constraint 4 +B =n where
A and B are the separation constants for the equations in
& and 1), respectively. The upfield coordinate is given by
n.
Next, we give a qualitative discussion of the solution of
these equations and matrix element calculations. We em-
ploy a Rayleigh-Schrédinger perturbation theory solution
[32,33] for small-field values. Direct numerical solution
is applicable, in principle, for fields of any magnitude,
though, in practice, it turns out to be inconvenient for
very small-field values because it is difficult to numerical-
ly handle the resultant extremely sharp resonances. Con-
sequently, the perturbation and numerical solution tech-
niques are complementary and additionally should serve
as consistency checks since they should produce match-
ing results for a suitable intermediate range of fields. For
large field values, the resonance nature of the radiator
states becomes an important part of their description and
perturbation theory is no longer applicable. Therefore
for these larger field values, a numerical solution is em-
ployed [34].

The presence of the uniform field at the radiator

changes the nature of bound atomic states by turning
each discrete energy level into a resonance; in other
words, there will be a solution for a particular set of
quantum numbers that includes a continuum of energy
values [35,36]. For a field strength given by e, the states
can be characterized uniquely by the quantum numbers
m, A, and the energy E. The quantum numbers m and A4
remain discrete, but E now has a continuous spectrum.
For weak-field values, the density of states is sharply
peaked about the energy value that corresponds to the
discrete state given by the perturbation theory solution to
the problem. As the field value increases, however, the
density of states broadens and the probability of finding
the electron with an energy more widely spaced from the
resonance center increases.

Since the values of the energy have a continuous spec-
trum, we have the normalization condition per unit ener-

gy given by
27 © ©
i [TdE [ TdnEF 0, ap ap

=8m,,m;sA,A’8(E —E'). (34
The density of states can be obtained by studying the

behavior of the electron probability density near the nu-

cleus [35,36] and can be approximated by the Breit-

Wigner parametrization [31]

ir?

ry

— S (35)
(E —Eg)+1ir?

D7 (E)=D} (Eg)

where Ey corresponds to the energy value at the max-
imum of the density of states of the resonance and T is
the full resonance width at half maximum.

Once we have numerically evaluated f(£) and g(7),
we are free to evaluate the matrix elements needed for the
line shape. We evaluate the field-dependent matrix ele-
ment of a real operator (@ between two resonance states
denoted by subscripts i and j by integrating over the ener-
gy range of each resonance. The square of the matrix ele-
ment for an operator @ can be written as

0, j(e)1>= [ dE, [ dE;|(y,(E;,e)|0y;(E;,e)) > . (36)

For sufficiently narrow resonances we can approximate
this result by
7l;

2

172 172

7
(1/1,~(ER,,<,6)|@|1/11~(ER,]-,6)> ’

2

J

(Qi.z

»J

(37

where we have used the value of the eigenfunctions at res-
onance center Ep ;. This is a reasonable approximation
because the main energy dependence of the wave func-
tions, for narrow resonances, is contained in the normali-
zation factor which is a function of the square root of the
density of states. We employ this approximation in all
numerical evaluations of atomic matrix elements in this
work. Our evaluation of the square of the matrix element
allows us to integrate over the density of states to obtain
the #T; /2 factors. Since these factors are always positive
and real, the sign (and any factors of i) of @, ; is reliably
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given by the evaluation of (;(E;,€)|O|y;(E;,€)) at
E;,=Ep; and E;=Epg ;. As the field € goes to zero, Eq.
(36) reduces to the usual zero-field limit.

IV. RESULTS AND DISCUSSION

In the preceding sections we have formulated an exten-
sion to the general theory of plasma spectral line
broadening and discussed many of the approximations
used to arrive at a workable result. This extended theory
includes higher-order microfield effects on atomic matrix
elements and radiator energy levels. We now present and
discuss the results of calculations based on this theory as
applied to the L, and L lines of hydrogenic argon.

The presence of these higher-order field effects can be
expected to lead to several discernible changes in dense
plasma spectral line shapes for the physical conditions we
are interested in: n,=1X10%* to 1X10*® cm 3 at
kT =800 eV. In this range, the lowest-order corrections,
the ion quadrupole and the quadratic Stark effect, will
generally give rise to a blue asymmetry of the spectral
line shape; the intensity of the high-energy side of the
spectral line will be enhanced over that of the low-energy
side. This comes about by the preferential shifting to
lower energy of components comprising the manifold of
energy levels associated with a principal quantum num-
ber n. Energy levels that have been Stark shifted to the
low-energy side of the unperturbed upper state of the
transition correspond to atomic electrons that are found
to have the maximum value of their probability ampli-
tude on the upfield side of the radiator potential well.
This corresponds to the side of the origin where the po-
tential barrier has a finite maximum; the other side, the
downfield side, corresponds to the potential barrier in-
creasing without bound. The upfield electrons are more
easily affected by the field and hence their energy levels
are shifted more. This preferential shifting produces a
spreading out of intensity on the low-energy side of the
line and thus a relative increase in the high-energy side of
the line. The addition of the ion quadrupole effect
enhances this trend and further adds to the blue asym-
metry of the line. The consequences of the field depen-
dence of the wave functions and their resulting matrix
elements are more difficult to characterize due to less sys-
tematic results on the line shape. Therefore we study this
effect only in combination with the other field effects.
For sufficiently strong fields, the Stark effect will cause
energy levels from adjacent principal quantum number
manifolds to overlap. Inclusion of this phenomenon can
be important for the accurate representation of line over-
lap and merging as well as line asymmetry. In this paper,
the intensity of all line shapes is multiplied by the »* fac-
tor present in Eq. (1) to account for an additional asym-
metry [37] and all lines are area normalized to one.

The inclusion of field effects in the case of the L, line
gives rise to a field-dependent fine-structure correction to
the radiator Hamiltonian. The field dependence appears
in the dipole matrix elements and, because we include the
ion quadrupole effect, also in the quadrupole matrix ele-
ments. For this transition, at the densities and tempera-
ture considered here, the resonance nature of the states is
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only nominally important and perturbation theory is ade-
quate. The n =2 and 3 levels are also well separated in
energy for these conditions and do not overlap for
relevant field strengths. Consequently, we need not con-
sider this overlap for the L, line calculation. We have
examined the L, line for n,=1X10%, 5X10%, and
1X10% cm™3 at kT=800 eV. As seen in Fig. 2, for the
highest density (1X 10%), there is little visible difference
in the line shape that includes the higher-order field
effects as compared to the one using field-independent
atomic physics and no ion quadrupole effect. The
difference between profiles for the lower densities is even
less. We conclude that, for the density range examined in
this paper, the plasma microfield is not strong enough for
these higher-order effects to become important. If we go
much beyond 1X 10%° cm 3, however, the electron degen-
eracy will have to be incorporated into the theory to de-
scribe the perturbing electrons of the plasma.

The Lg line has its excited state electron in the less
tightly bound n =3 state. This makes it much more sus-
ceptible to the effect of the plasma microfield. To investi-
gate the higher-order effects on this line, we include in
our calculations the ion quadrupole effect, field-
dependent atomic physics, and the mixing of the levels of
principal quantum number n =3 and 4.

This last process allows for atomic matrix elements
connecting the two principal quantum number manifolds.
It also contributes more terms to the sum over intermedi-
ate states when evaluating the electron broadening opera-
tor M (Aw). In the field-free atomic physics calculation,
this is also possible but the energy levels are more widely
separated and their contribution to the sum over inter-
mediate states will be smaller. The decreasing value for
large Aw of the electron broadening many-body function
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FIG. 2. The L, line of hydrogenic argon with and without
higher-order field effects. The profile with field-independent
atomic physics and no ion-quadrupole effect is given by
The profile with field-dependent atomic physics and the APEX
ion quadrupole effect is given by ------ . The density is
n,=1X10% cm™3 and kT=800 eV. Both profiles contain fine-
structure splitting and are Doppler convoluted. In all energy-
intensity plots intensity is in arbitrary units.
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G (Aw) will attenuate each added term if the energy sepa-
ration between levels is greater than the plasma frequen-
cy @, .. In the field-dependent atomic physics approach,
the zero-order energy levels are perturbed by the Stark
effect and can overlap. When this occurs, the G (Aw)
function takes its maximum value for each intermediate
state and the total electron broadening term will be
larger. In general, the red (blue) levels of a principal
quantum number manifold interact most strongly with
the red (blue) levels of other manifolds. On the other
hand, the red levels of one principal quantum number
and the blue levels corresponding to another interact
hardly at all [30]. This quasiselection rule causes the
electron broadening of the n =3 red levels to be most
influenced by the red levels of the » =4 manifold. In-
teraction of the blue levels between manifolds is less due
to their greater separation in energy. This mechanism
contributes a further blue asymmetry to the Lg line by
way of a broader red wing caused by this additional elec-
tron broadening. These electron broadening effects are il-
lustrated in Fig. 3 where we show the L; line at
n,=1X10% cm™3 and kT=800 eV for the case of full
field-dependent atomic physics plus the ion quadrupole
effect. This is compared to the same line but with all con-
nections to the n =4 levels excluded from the electron
broadening of the Lz transition. The mixing between the
n =3 and 4 manifolds produces a line profile which is ap-
proximately 10% broader (width at half intensity) than
the line with the restriction on the electron broadening
sum. This effect at lower densities has been noted previ-
ously by Woltz and Hooper [38] using field-free atomic
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FIG. 3. Comparison of the L line of hydrogenic argon with
and without electron broadening contributions from the n =4
levels. The Stark broadened line shape with field-dependent
atomic physics, the ion quadrupole effect, and contributions to
electron broadening from dipole matrix elements connecting
n =3 levels with other n =3 levels as well as contributions con-
necting n =3 level with all n =4 levels is given by . The
same line but with all dipole matrix elements connecting the
n =3 and 4 levels deleted from the sum in Eq. (13), which is
used to evaluate the electron broadening operator M(Aw), is
given by (----). Here n,=1X10% cm™3 and kT=800 eV.
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physics.

The fine-structure splitting for this line is on the order
of 2 eV. For n,=1X10%* cm ™3, the overall linewidth is
about 40 eV, so we can consequently ignore the much
smaller fine-structure splitting. It has been shown [19,39]
that this splitting introduces a slight red line asymmetry
that will be obscured by the blue symmetry effects as the
density increases. The overall shift of the line due to the
fine structure is not significant for the line shape and is
ignored here.

Before we look at the profiles of the Lg line in detail,
we examine energy-level diagrams for the n =3 and 4 lev-
els of hydrogenlike argon as a function of the field
strength. Figure 4(a) gives the energy levels as a function
of the field for the case of field-dependent atomic physics
but no ion quadrupole effect. The manifolds for the two
levels begins to overlap at values of the unitless field mag-
nitude € slightly greater than one. According to the
Inglis-Teller limit [40], this is the point where the two
spectral lines merge and become indistinct. This will
only occur, however, if both lines are of comparable in-
tensity. In a spectral series the intensity of the lines gen-
erally decreases as you go up in the series (as the n value
of the upper state increases). As this occurs, we will find
that the L, line merges with the Ly line but the Ly line
itself will still be plainly visible due to its much higher in-
tensity. The Inglis-Teller limit is more accurately applied
to lines corresponding to large values of the principal
quantum number #n, as was noted in the original formula-
tion [40]. For that case the intensities of adjacent lines
are similar and their merger will produce an indistin-
guishable whole.

In Fig. 4(a) we can see the deviation from the linear
Stark effect caused by the higher-order corrections to the
energy. This is most prominent in the n =4 levels. In
Fig. 4(b) the Hamiltonian is diagonalized with the ion
quadrupole terms added. Now the levels from the two
manifolds interact strongly through the field-dependent
quadrupole moment matrix elements of the ion quadru-
pole term. There is a downward shifting of red energy
levels of both manifolds and a slight bunching together of
the blue levels. When the levels approach each other be-
tween these two manifolds, there is strong interaction and
level mixing and repulsion are evident. The highest ener-
gy (bluest) n =3 level experiences a strong avoided cross-
ing with the lowest energy (reddest) n =4 level. The en-
ergy values in this diagram were calculated from a direct
diagonalization of the Hamiltonian [Eq. (27)] for the
n =3 and 4 levels using field-dependent atomic physics.

The Lg line, without any higher-order field effects or
fine structure, is an almost completely symmetric,
double-peaked profile. The two levels in the center of the
n =3 manifold have electric quantum number ¢ =0 and
are dipole forbidden [see Fig. 4(a)]. This leaves only the
outer components which split linearly with the field thus
producing the two nearly symmetric peaks. When the
ion quadrupole effect is added, the high-energy levels
bunch together slightly while the low-energy levels are
deflected downward imparting a blue asymmetry to the
line. This asymmetry is seen to increase as the density in-
creases in Figs. 5(a)—5(c). In these figures the effect of the
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n =4 levels is also apparent. The L, line is centered at
4133 eV. In Fig. 5(a), at an electron density of
n,=1X10* cm ™3 we see a slight increase in the intensity
of the blue wing, but as the density increases a broad, flat,
blue shoulder develops. At 5X10%* cm™3, the L, line is
flat having merged with the Lz to become the prominent
shoulder visible in Fig. 5(b). This illustrates the point
made earlier about the Inglis-Teller limit applying only to
the less intense member of a pair of merging lines.
Having established the ion quadrupole effect as a
source of line asymmetry, we will return to it later to ex-
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FIG. 4. The energy-level diagram for the n =3 and 4 level
manifolds as a function of the plasma microfield using field-
dependent atomic physics, but no ion quadrupole effect is shown
in (a). (b) shows the energy-level diagram for the » =3 and 4
level manifolds as a function of the plasma microfield using
field-dependent atomic physics and the ion quadrupole effect.
The n =3 levels are given by ---- and the n =4 levels are given
by . The field is given by the unitless €=¢€/€, and the en-
ergy is in rydbergs. Note the avoided level crossings introduced
by the ion quadrupole perturbations in (4b). The ion quadru-
pole corrections are calculated in the APEX approximation for
n,=1X10% cm™%and kT=800eV.
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FIG. 5. The Ly line of hydrogenic argon with and without
ion quadrupole corrections. The profile with field-independent
atomic physics and no ion quadrupole effect is given by
The profile with field-independent atomic physics and the
APEX ion quadrupole effect is given by ----. (a), (b), and (c) cor-
respond to densities of 7, =1X10?*, 5X 10*, and 1X10% cm 3,
respectively. All three correspond to a temperature of kT =800
eV and are Doppler convoluted. Note that energy scales vary
from plot to plot.
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amine the results of different approaches to its calcula-
tion. Now we examine the effect of the field-dependent
atomic physics on the Lg line along with the ion quadru-
pole effect. From the energy-level diagram, we expect the
added field dependence to produce further blue asym-
metry of the line shape. In Fig. 6(a) we see this beginning
for n,=1X10?* cm 3. This trend continues in Fig. 6(b)
at n,=5X10* cm 3. A check of these additional asym-
metries against an approximate quadratic Stark effect cal-
culation [19,39] shows that this asymmetry effect is due
primarily to the quadratic correction to the energy. At
1X10%° cm ™3, however [Fig. 6(c)], the additional asym-
metry goes beyond the quadratic correction and can be
attributed to higher-order energy shifts and field-
dependent changes in the atomic matrix elements. In
Figs. 7(a)-7(c) we compare the full field-dependent atom-
ic physics line-shape calculations for a range of densities,
with the field-independent atomic physics calculations
with the quadratic Stark effect correction to the level en-
ergies. Both cases also have the ion quadrupole effect.
The quadratic Stark effect correction consists of adding
the second-order perturbation theory term from the
treatment of an ion in a uniform electric field to the
upper state radiator energy levels. This amounts to
neglecting all field dependence from the atomic physics
except this diagonal energy correction second order in
the field. It can be assumed that remaining differences
between the two line shapes in the illustrations are due to
additional field dependence of the energies, matrix ele-
ments, and intensity factors. We conclude that for a tem-
perature of kT=800 eV at the density of n,=5X10*
cm™? and below, the field-independent atomic physics
plus the approximate quadratic Stark effect correction
are good approximations to the full field-dependent re-
sults for the Ly line of hydrogenic argon. The resonance
widths that are included in these calculations do not add
significant width or distortion to the line shape. This is
due to the resonance width becoming appreciable only
where the electric field is very large, a condition for
which the microfield probability function is negligibly
small.

We now return to consideration of the three different
treatments of the ion quadrupole effect. The NN approx-
imation ignores the many-body effects of other ions in
their interaction with each other and with the charged
radiator. The APEX approximation is a full many-body
treatment that accounts for multiple perturbers as well as
the effect of ion-ion correlations. Finally, the IP approxi-
mation includes the effect of multiple perturbers but ig-
nores all ion-ion correlations. Both the IP and APEX ap-
proximations include the interaction of the perturbing
ions with the radiator. As expected from Fig. 1, the line
shape for the Lg line employing the NN approximation
for the field gradient approaches that using the APEX
approximation as the density increases. For n,=1X10%
cm~? the two approximations produce line profiles whose
maximum intensities differ by no more than 3.2% the
NN approximation producing the greater asymmetry. At
the lowest density studied here (n,=1X 10** cm™?), the
intensities differ by no more than 5%. The IP approxi-
mation produces line profiles that exhibit less asymmetry
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FIG. 6. The Lg line of hydrogenic argon with and without
field-dependent atomic physics. The profile with field-
independent atomic physics and the APEX ion quadrupole
effect is given by . The profile with field-dependent atomic
physics and the APEX ion quadrupole effect is given by ----. (a),
(b), and (c) correspond to densities of n, =1X 10?*, 5X 10%, and
1X10%° cm ™3, respectively. All three correspond to a tempera-
ture of kT=800 eV and are Doppler convoluted. Note that en-
ergy scales vary from plot to plot.
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than either the NN or APEX approximations also as ex-
pected from Fig. 1.

This paper has focused on the behavior of additional
ion broadening effects on some of the resonance lines of
hydrogenic argon. Heliumlike satellite lines, which can
appear on the low-energy side of resonance lines, are not
considered here, although they have been discussed else-
where [41]. Additionally, three points regarding uncer-
tainties in the treatment of electron broadening need to
be made. First, we have not considered line shifts due to
electron collisions in this work. Several theoretical inves-
tigations [42,43] have pointed out the possibility of
significant line shifts from this source. Since these pre-
dicted shifts differ for each line series member, uncertain-
ties could be introduced in our case on the high-energy
side of the Lyman-B line for conditions where the
Lyman-8 and Lyman-y lines significantly overlap.
Second, interference between continuum and line radia-
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tion might produce an additional asymmetry effect [44].
This interference has not been included in our treatment,
but such processes are currently under investigation.
Third, for low-density cases the second-order electron
broadening theory is not valid in the line wings and
should be replaced by the so-called unified theory [47].
This wing behavior can also be described by Baranger’s
one-electron theory [45], but is not included here. At-
tempts to address this are presently under development.

V. CONCLUSIONS

We conclude this investigation by summarizing our
findings, pointing out some of their consequences, and
suggesting additional steps needed to extend this work to
higher densities.

For our range of physical conditions (n,=1X10%* to
1X10% cm™3 at kT=800 eV) and for the pure argon
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FIG. 7. Comparison of the quadratic Stark effect corrected field-independent atomic physics case to the full field-dependent case

for the Lg line of hydrogenic argon. The profile with field-dependent atomic physics and the ion quadrupole effect is given by

The profile with field-independent atomic physics, the ion quadrupole effect and the quadratic energy correction is given by ----. (a),
(b), and (c) correspond to densities of n, =1X 10*, 5X 10%, and 1 X 10% cm ™3, respectively. All three correspond to a temperature of
kT=800 eV and are Doppler convoluted. Note that the quadratic Stark effect correction nearly compensates for the full field-
dependent effects except in the highest-density case (c). Note that energy scales vary from plot to plot.
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plasma we found that the higher-order field effects begin
to become important for the n =3 to 1 transition (Lg).
The n =2 to 1 transition (L,) showed only very slight
perturbations from the linear Stark effect with fine-
structure splitting and Doppler broadening. While the
fine structure does show a slight field dependence, it pro-
duces no significant effect on the line splitting or shape
for the L, line. The Ly line did show many of the addi-
tional field effects. The most pronounced was the effect
of the field-dependent atomic physics (matrix elements
and energy levels that include an exact treatment of the
ion dipole term in the radiator Hamiltonian). This field
dependence can be well approximated by simply adding
the quadratic correction to the level energy for densities
of 1X10* to 5X10%* cm™3. At n,=1X10% cm 3, how-
ever, the other field effects on the atomic physics become
important and cannot be ignored.

We have also seen that a more accurate treatment of
ion-ion correlations in a model of the ion quadrupole
effect increases the magnitude of this effect as compared
to an IP treatment that does not include these correla-
tions. Additionally, at the very highest densities that we
examined, a simple nearest-neighbor model produces a
fair approximation to the more accurate results. For
densities higher than these the nearest-neighbor approxi-
mation may be quite sufficient.

Line merging was also examined. It was demonstrated
that it is possible to carry the line-shape calculation to
densities beyond the Inglis-Teller merging point. We in-
cluded the n =4 levels in our calculation of the n =3 to 1
transition and found that transitions from the n =4 level
formed a prominent shoulder on the high-energy side of
the Lg line.

To carry these line-shape calculations to higher densi-
ties for the same temperature range, it will be necessary
to include a treatment of degenerate plasma electrons.
For densities of n, =1X 10% ¢m ™3 the Fermi energy is of
the same order as the thermal energy. When the plasma
electrons become degenerate they may not be available
for electron collisional broadening [46] and may reduce
the electron broadening at high densities.
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APPENDIX

In this appendix we evaluate the constrained average of
the field gradient. Initially the constrained average of a
general quantity F is developed and specialized to the
case of the field gradient at the end. The constrained
average ( F), represents the average, in the presence of
the charged radiator, of the quantity F over the ensemble
of all possible plasma ion configurations that give the
electric-field magnitude € at the origin. This average is
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given by

(F).= (F8(e—E))
Q(e)
where Q (€) is the plasma microfield function and ( ) is
the complete perturbing ion subsystem ensemble average.
It is possible to relate this constrained average to a func-
tional derivative of the plasma microfield function. This
will allow us to evaluate the constrained average in terms
of a simplified model for the microfield function Q (€).
For our purposes we will take F to be an additive func-
tion of the ion spatial coordinates,

(A1)

F=3 f(r))= [dr f(r)n(r), (A2)
where
n(r)=Y 8(r—r;) . (A3)
This leads to
(F)e=—— [arfir) [ -Proe-he(n(rier®) .
¢ Qle) (2m)?
(A4)

We introduce G(A), the generating function of the
microfield distribution, where

G(A)=InQ(A)=In{e*E) .

If we define a function ¢, such that ¢=iA-E(r), then
G (A) becomes a functional of ¢, or G(A)=G[¢]. Now
we will express (F ), in the form of a functional deriva-
tive. A comparison of Eq. (6) of Ref. [16] and Eq. (A1) of
Ref. [25] allows us to establish a connection between the
functional derivative G[¢] and the averaged quantity in
Eq. (A4) above to give

IAVEY — (,iME) 8G[¢]
8(iA-E(r))
Substitution of Eq. (A6) into Eq. (A4) gives us
=__1 dA —ir-€p) SG[ﬁ
(Fl= g Jarr ] o 5o ™ e s ey -
(A7)

(AS5)

(n(r)e (A6)

This explicitly shows the relationship between the con-
strained average of F and the functional derivative of the
microfield generating function G (A). We are free to use
whatever functional model we choose for Q(A).

With the APEX model in Eq. (28) used to evaluate Eq.
(A7) we obtain

n:
(F)E=—-———Q('e) [ dr f(rg(rQ(e—E*(r), (A8)
where it is understood that the microfield distributions
Q(e) are in the APEX approximation. E*(r) is the
APEX renormalized plasma-ion field given by Eq. (29).
For the ion quadrupole effect, the constrained average
needed is { E,, ). In particular, we have

N
F=Ezz= 2 Ezz(ri) s

i=1

(A9)
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where €,,(r;) is the field produced by one of the N per-
turbing ions. The derivative term is given by

—r/A

1+2 |(1—3cos?0) .

A

£, (r)=Ze2— (A10)
r

The microfield function in the APEX approximation is
[15]

0(e)=—5— [ “ak ksin(kere™" ", (A11)
with
hl(k)=41rf°°drr2g(r) E(r) {Jo[KE*(r)]—1}, (A12)
0 E*(r)

where jy(x)=sin(x)/x is the zero-order spherical Bessel
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function of the first kind. Using this approximation we
can evaluate Eq. (A8) for the case of F =E,, to obtain

_ Zen
¢ 27%Q(e)
© n;hy (k)
X k k2 i
fo d e

(E.)

e*r/?»

X fowdr r’g(r) 3

(1—r/AMIy(r) .

(A13)
The angular integral I, is given by [19]
Io(n= [dOQ(1—3cos?6)jo[k|e—E*(r)|]
=—8mj,(ke)j,[kE*(r)] . (A14)
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